Triterpenoid total synthesis. Part 4. ${ }^{1}$ Synthesis of (\pm)-hippospongic acid A, a triterpene isolated from the marine sponge
 Hippospongia sp.

Hirosato Takikawa, Junko Koizumi, Yuko Kato and Kenji Mori *
Department of Chemistry, Science University of Tokyo, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan

Received (in Cambridge) 14th May 1999, Accepted 14th June 1999

Hippospongic acid A (1), a triterpene metabolite of a marine sponge Hippospongia sp. with inhibitory activity against gastrulation of starfish embryos, was synthesized as its racemate by starting from ($2 E, 6 E$)-farnesol (2).

Introduction

In 1996 hippospongic acid A (1), a triterpene with inhibitory activity for gastrulation of starfish embryos, was isolated by Ohta and co-workers from a marine sponge Hippospongia sp. ${ }^{2}$ In 1998 the planar structure of $\mathbf{1}$ was revised and the absolute stereochemistry was determined as shown in Scheme 1 by the syntheses achieved by the same group. ${ }^{3}$ Due to gastrulation being a fundamental process for multicellular animals and there being only a few selective inhibitors of it, $\mathbf{1}$ is a remarkable and unique natural product. In addition, the structure of $\mathbf{1}$, which possesses a tetrahydropyran ring and an α-methylene carboxylic acid moiety on a triterpenoid skeleton, is rather unusual. We therefore became interested in synthesizing $\mathbf{1}$ as a part of our synthetic work on marine natural products. ${ }^{1,4}$ Herein we describe our synthesis of (\pm)-hippospongic acid A (1) in detail.

Results and discussion

Synthetic plan

Scheme 1 shows our synthetic plan for 1 . For preparation of the α-methylene carboxylic acid portion, the malonate derivative \mathbf{A} was thought to be an appropriate intermediate. To construct the tetrahydropyran ring, we adopted an intramolecular Michael addition strategy employing B as the precursor. It was envisaged that the Michael acceptor B could be synthesized by Knoevenagel reaction of \mathbf{C} with dimethyl malonate. It was hoped that the aldehyde \mathbf{C} could be prepared by Claisen
rearrangement of \mathbf{D}, obtainable from the aldehyde \mathbf{E}. The known aldehyde \mathbf{E}, the starting material, is easily synthesized by starting from $(2 E, 6 E)$-farnesol \mathbf{F}.

Synthesis of hippospongic acid A

Our synthetic plan was realized as shown in Scheme 2. First we aimed at synthesizing the known aldehyde $\mathbf{3}(=\mathbf{E})$. Although several papers concerning the synthesis of $\mathbf{3}$ have been reported, ${ }^{5,6}$ all of their methods seemed to be unsuitable for multi-gram scale synthesis. We therefore developed a new approach to 3. However, our methodology turned out to be almost identical with that of Tokumasu et al., ${ }^{3 b}$ which was reported very recently. Nevertheless, we could prepare 3 and continued our synthesis as shown in Scheme 2. The aldehyde 3 was treated with the $O, 2$-dilithio derivative of allyl alcohol, $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Li}) \mathrm{CH}_{2} \mathrm{OLi},{ }^{7}$ to afford $\mathbf{4 a}(94 \%)$. The selective protection of the primary hydroxy group of $\mathbf{4 a}$ as the TBDMS ether yielded $\mathbf{4 b}$ (=D) in 91% yield. The allyl alcohol $\mathbf{4 b}$ was subjected to Claisen rearrangement under Johnson's conditions ${ }^{8}$ to give the ester 5a, which was immediately reduced with DIBAL-H to afford $\mathbf{5 b}$ in 69% yield (2 steps). The $Z: E$ ratio was estimated to be $96: 4$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. Oxidation of $\mathbf{5 b}$ with DessMartin periodinane ${ }^{9}$ gave $\mathbf{5 c}(=\mathbf{C})$ in 78% yield. In this reaction sequence, replacement of the TBDMS protecting group with the TBDPS group provided no remarkable improvement.

We also examined other Claisen rearrangement conditions. An attempt to obtain $\mathbf{5 c}$ directly from $\mathbf{4 b}$ by the classical pro-

Scheme 1 Structure and retrosynthetic analysis of hippospongic acid A.

Scheme 2 Synthesis of hippospongic acid A-(1). Reagents, conditions and yields: (a) 2-bromoallyl alcohol, $\mathrm{Bu}^{t} \mathrm{Li}, \mathrm{Et}_{2} \mathrm{O},(94 \%)$; (b) TBDMSCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(91 \%)$; (c) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OEt})_{3}$, propionic acid, $138^{\circ} \mathrm{C}$; (d) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(69 \%, 2$ steps); (e) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(78 \%) ;(\mathrm{f}) \mathrm{Hg}(\mathrm{OAc})_{2}$, ethyl vinyl ether, heat (52\%); (g) $\mathrm{Ac}_{2} \mathrm{O}$ pyridine (89%); (h) LDA, TBDMSCl, HMPA, THF; aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, \mathrm{THF}(94 \%)$.
cedure ${ }^{10}$ was not successful, because although the product was obtained, the Z : E ratio was $c a .2: 1$. We then tried to utilize the Ireland enol ester Claisen rearrangement. ${ }^{11}$ The alcohol $\mathbf{4 b}$ was converted into the corresponding acetate $\mathbf{6}$, which was subjected to Ireland Claisen rearrangement conditions followed by hydrolysis ${ }^{12}$ to give $\mathbf{5 d}$. Although the efficiency of rearrangement was better than former attempts ($Z: E=98: 2 ; 94 \%$ yield), three additional steps were required to convert $\mathbf{5 d}$ into $\mathbf{5 c}$. Judging from the view of overall efficiency, therefore, we chose the first procedure as the most appropriate one.

The resulting aldehyde 5 c was employed in the Knoevenagel reaction. To our surprise, treatment with 1.5 eq. of dimethyl malonate in the presence of piperidinium acetate ${ }^{13}$ gave a mixture of $\mathbf{5 c}, 7 \mathbf{a}$ and $\mathbf{7 b}$ as shown in Scheme 3, in which $\mathbf{7 b}$ was the predominant product ($\sim 60 \%$). The unexpected adduct $\mathbf{7 b}$ was thought to be produced by Michael addition of dimethyl malonate to the usual Knoevenagel reaction product 7a. At this stage, we decided to prepare $\mathbf{7 b}$ preferentially, because the key intermediate 7 a or $\mathbf{8}(=\mathbf{B})$ was thought to be obtainable from 7 b by retro-Michael type elimination of one dimethyl malonate. By treatment with 2.5 eq. of dimethyl malonate, $\mathbf{5 c}$ was converted into 7b in 75% yield. Conversion of 7b to $7 \mathbf{a}$ or its equivalent was achieved by treatment with TBAF to afford the desired ring-closure adduct $\mathbf{9}(=\mathbf{A})$ in 88% yield. It was deduced easily that not only deprotection of the TBDMS group but also our expected elimination of one malonate took place and the resulting $\mathbf{8}$ underwent intramolecular Michael addition to construct the tetrahydropyran ring.

The remaining objective was to construct the α-methylene carboxylic acid moiety. We initially attempted to convert 9 into 10 by Marshall's methodology. ${ }^{14}$ However, the desired allylic alcohol 10 could not be obtained. We therefore adopted a stepwise procedure as follows. The reduction of 9 with LAH followed by mono-tosylation ${ }^{15}$ afforded the tosylate 11b in 58% yield (2 steps). This was then oxidized with PCC, together with β-elimination of the tosyloxy group, to give aldehyde $\mathbf{1 2}$ in 63% overall yield. Finally, further oxidation of $\mathbf{1 2}$ with sodium chlorite ${ }^{16}$ gave (\pm)-hippospongic acid A (1) as a colorless oil in quantitative yield. The overall yield of $\mathbf{1}$ was 13% based on $\mathbf{3}$ in

(d) $\square 11 \mathrm{aX}=\mathrm{H}$

Scheme 3 Synthesis of hippospongic acid A-(2). Reagents, conditions and yields: (a) dimethyl malonate, piperidinium acetate (75\%); (b) TBAF, THF (88\%); (c) LAH, Et ${ }_{2} \mathrm{O}$ (74%); (d) $\mathrm{Bu}^{n} \mathrm{Li}$, THF, $\mathrm{TsCl}(78 \%)$; (e) $\mathrm{PCC}, \mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(63 \%)$; (f) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$ 2-methylbut-2ene, aq. $\mathrm{Bu}^{t} \mathrm{OH}$ (quant.).

11 steps. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ as well as IR and MS spectra of $(\pm)-\mathbf{1}$ were in good accord with those previously reported. ${ }^{2,3}$
In conclusion, the synthesis of (\pm)-hippospongic acid A (1) was achieved by starting from the known aldehyde 3 , which was easily prepared from ($2 E, 6 E$)-farnesol.

Experimental

IR spectra were measured as films for oils on a JASCO A-102 spectrometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 90 MHz on a JEOL JNM-EX 90A spectrometer, at 400 MHz on a JEOL JNM-LA400 spectrometer and at 500 MHz on a JEOL JNM-LA500. The peak for TMS or CHCl_{3} (at $\delta_{\mathrm{H}}=7.26$) was used for the internal standard. J Values are given in Hz . The ${ }^{13} \mathrm{C}$-NMR spectrum was recorded at 126 MHz on a JEOL JNM-LA500. The peak for CDCl_{3} (at $\delta_{\mathrm{C}}=77.0$) was used as an internal standard. Mass spectra were measured with a JEOL JMS-SX102A spectrometer. Column chromatography was carried out on Merck Kieselgel 60 Art 1.07734.

($6 E, 10 E, 14 E$)-6,11,15,19-Tetramethyl-2-methyleneicosa-6,10,14,18-tetraene-1,3-diol 4a

To a solution of 2-bromoallyl alcohol ($276 \mathrm{mg}, 2.02 \mathrm{mmol}$) in diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ was added slowly $\mathrm{Bu}^{t} \mathrm{Li}\left(1.48 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in pentane; $3.52 \mathrm{~cm}^{3}, 5.05 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under Ar. This mixture was quickly warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 3.5 h . The aldehyde $3(212 \mathrm{mg}, 0.670 \mathrm{mmol})$ was added to the solution and stirring was continued at $0^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was quenched with methanol and water, and extracted with diethyl ether. The extract was washed with water and brine, dried with MgSO_{4}, and concentrated under reduced pressure.

The residue was chromatographed on SiO_{2} to give the diol $\mathbf{4 a}$ ($235 \mathrm{mg}, 94 \%$) as a colorless oil; $n_{\mathrm{D}}{ }^{25} 1.4992$ (Found: C, 80.44; $\mathrm{H}, 11.00 . \mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{2}$ requires $\left.80.16 ; \mathrm{H}, 11.30 \%\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3350s $(\mathrm{O}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.60(12 \mathrm{H}, \mathrm{s}, 6-, 11-, 15-\mathrm{and}$ $\left.19-\mathrm{CH}_{3}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}_{3}\right), 1.60-2.20(18 \mathrm{H}, \mathrm{m}, 4-, 5-, 8-, 9-$, $12-, 13-, 16-17-\mathrm{H}_{2}$ and OH), $4.26\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}_{2}\right.$ and $\left.3-\mathrm{H}\right), 5.09$ ($6 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{C}=\mathrm{CH}_{2}, 7-, 10-, 14-$ and $18-\mathrm{H}$).

($6 E, 10 E, 14 E$)-1-tert-Butyldimethylsilyloxy-6,11,15,19-tetra-methyl-2-methyleneicosa-6,10,14,18-tetraen-3-ol 4b

To a solution of $\mathbf{4 a}(1.54 \mathrm{~g}, 4.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$, DMAP ($151 \mathrm{mg}, 1.23 \mathrm{mmol}$), triethylamine $\left(0.86 \mathrm{~cm}^{3}, 6.2\right.$ mmol) and $\mathrm{TBDMSCl}(723 \mathrm{mg}, 4.93 \mathrm{mmol})$ were added successively at $0^{\circ} \mathrm{C}$ under Ar. After stirring at room temperature for 6 h , the mixture was quenched with water and extracted with CHCl_{3}. The extract was washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the TBDMS ether $\mathbf{4 b}(1.83 \mathrm{~g}, 91 \%)$ as a colorless oil; $n_{\mathrm{D}}{ }^{25} 1.4869$ (Found: C, $75.94 ; \mathrm{H}, 11.60 . \mathrm{C}_{31} \mathrm{H}_{56} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 76.16 ; \mathrm{H}, 11.55 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3450 \mathrm{~s}(\mathrm{O}-\mathrm{H}), 1260 \mathrm{~m}(\mathrm{Si}-\mathrm{Me}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.09(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{i} \mathrm{Bu}\right), 1.60(12 \mathrm{H}, \mathrm{s}, 6-$ $11-, 15-$ and $\left.19-\mathrm{CH}_{3}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}_{3}\right), 1.60-2.20(16 \mathrm{H}, \mathrm{m}$, $4-, 5-, 8-, 9-, 12-, 13-, 16-$ and $\left.17-\mathrm{H}_{2}\right), 2.42(1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{OH})$, $4.11(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.24\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}_{2}\right), 5.07\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right.$, $7-, 10-, 14-$ and $18-\mathrm{H}$).

Ethyl ($4 Z, 8 E, 12 E, 16 E)$-4-tert-butyldimethylsilyloxymethyl-8,13,17,21-tetramethyldocosa-4,8,12,16,20-pentaenoate 5a

To a solution of $\mathbf{4 b}(4.01 \mathrm{~g}, 8.18 \mathrm{mmol})$ in ethyl orthoacetate ($10.5 \mathrm{~cm}^{3}, 57.3 \mathrm{mmol}$) was added propionic acid ($c a .0 .04 \mathrm{~g}, 0.5$ mmol). This mixture was heated at $138^{\circ} \mathrm{C}$ for 2 h , and ethanol was removed by distillation. After cooling to room temperature, the mixture was concentrated under reduced pressure to give the crude ester $5 \mathrm{a}(c a .4 .6 \mathrm{~g})$ as an oil; $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.02$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\dagger} \mathrm{Bu}\right), 1.60(12 \mathrm{H}, \mathrm{s}, 8-, 13-, 17-\mathrm{and}$ $\left.21-\mathrm{CH}_{3}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{H}_{3}\right), 2.00(18 \mathrm{H}, \mathrm{m}, 3-, 6-, 7-, 10-, 11-$, $14-$, 15-, 18- and $\left.19-\mathrm{H}_{2}\right), 2.42\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 4.19(4 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{OSi}$), $5.14(5 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-, 9-, 12-, 16-\mathrm{and}$ $20-\mathrm{H})$. This ester was employed in the next step without purification.

(4Z,8E, 12E, 16E)-4-tert-Butyldimethylsilyloxymethyl-8,13,17, 21-tetramethyldocosa-4,8,12,16,20-pentaen-1-ol 5b

DIBAL-H ($0.94 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $20.1 \mathrm{~cm}^{3}, 18.9 \mathrm{mmol}$) was added dropwise to a solution of 5 a (ca. 4.6 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(50 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under Ar. The reaction mixture was slowly warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 5 h . The resulting solution was quenched with $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$, filtered through Celite and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the recovered $\mathbf{4 b}(0.48 \mathrm{~g}, 12 \%)$ and the alcohol $\mathbf{5 b}(2.56 \mathrm{~g}, 69 \%$ based on the consumed $\mathbf{4 b}, 2$ steps) as a colorless oil; $\left(E: Z=4: 96\right.$; determined by $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right), n_{\mathrm{D}}{ }^{26}$ 1.4891 (Found: C, 76.34; H, 11.46. $\mathrm{C}_{33} \mathrm{H}_{60} \mathrm{O}_{2} \mathrm{Si}$ requires C, $76.68 ; \mathrm{H}, 11.70 \%) ; v_{\max }(\mathrm{f} 1 \mathrm{~m}) / \mathrm{cm}^{-1} \quad 3350 \mathrm{~s} \quad(\mathrm{O}-\mathrm{H}), 1260 \mathrm{~m}$ ($\mathrm{Si}-\mathrm{Me}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.91(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Si}^{\mathrm{t}} \mathrm{Bu}\right), 1.60\left(12 \mathrm{H}, \mathrm{s}, 8-, 13-, 17-\mathrm{and} 21-\mathrm{CH}_{3}\right), 1.68(3 \mathrm{H}, \mathrm{s}$, $\left.22-\mathrm{H}_{3}\right), 1.68-1.74(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.95-2.19(19 \mathrm{H}, \mathrm{m}, \mathrm{OH}, 3-, 6-$, $\left.7-, 10-, 11-, 14-, 15-, 18-\mathrm{and} 19-\mathrm{H}_{2}\right), 3.63$ ($2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}$), 4.06 $\left[\sim 0.08 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}\right.$ due to (E)-isomer], $4.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}\right)$, $5.07-5.16(4 \mathrm{H}, \mathrm{m}, 9-, 12-$, $16-\mathrm{and} 20-\mathrm{H}), 5.26(1 \mathrm{H}, \mathrm{t}, J 7.0$, $5-\mathrm{H})$.

(4Z,8E, 12E, $16 E)$-4-tert-Butyldimethylsilyloxymethyl-8,13,17, 21-tetramethyldocosa-4,8,12,16,20-pentaenal 5c

To a solution of Dess-Martin periodinane ($67.7 \mathrm{mg}, 0.160$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added $\mathbf{5 b}(16.4 \mathrm{mg}, 0.0317 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ at room temperature under Ar. After stir-
ring for 30 min , the reaction mixture was diluted with diethyl ether and quenched with aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}\left(10 \%, 1 \mathrm{~cm}^{3}\right)$, saturated aq. $\mathrm{NaHCO}_{3}\left(1 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether. The extract was washed with saturated aq. NaHCO_{3}, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the aldehyde 5 c $(12.8 \mathrm{mg}, 78 \%)$ as a colorless oil; ${n_{\mathrm{D}}}^{26} 1.4878$ (Found: C, 76.62 ; $\mathrm{H}, 11.43 . \mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{Si}$ requires C, $76.98 ; \mathrm{H}, 11.35 \%$); $v_{\text {max }}(\mathrm{film}) /$ $\mathrm{cm}^{-1} 2710 \mathrm{w}$ (CHO), 1730s (C=O), 1260 m (Si-Me); $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Sit}^{\mathrm{t}} \mathrm{Bu}\right), 1.59$ and $1.60\left(3 \mathrm{H}\right.$ and 9 H , each s, $8-, 13-, 17-$ and $\left.21-\mathrm{CH}_{3}\right), 1.68(3 \mathrm{H}$, $\left.\mathrm{s}, 22-\mathrm{H}_{3}\right), 1.95-2.13(16 \mathrm{H}, \mathrm{m}, 6-, 7-, 10-, 11-, 14-, 15-, 18-\mathrm{and}$ $\left.19-\mathrm{H}_{2}\right), 2.43\left(2 \mathrm{H}, \mathrm{t}, J 7.3,3-\mathrm{H}_{2}\right), 2.55(2 \mathrm{H}, \mathrm{dt}, J 1.8$ and 7.3 , 2H_{2}), 4.17 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}$), $5.07-5.16(4 \mathrm{H}, \mathrm{m}, 9-, 12-$, 16- and $20-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{t}, J 7.3,5-\mathrm{H}), 9.75(1 \mathrm{H}, \mathrm{t}, J 1.8, \mathrm{CHO})$.

Direct conversion of $\mathbf{4 b}$ to $\mathbf{5 c}$

A mixture of $\mathbf{4 b}$ ($21 \mathrm{mg}, 0.043 \mathrm{mmol}$) and $\mathrm{Hg}(\mathrm{OAc})_{2}(4.1 \mathrm{mg}, 13$ mmol) in ethyl vinyl ether ($1 \mathrm{~cm}^{3}$) was stirred and heated under reflux for 12 h . o-Xylene $\left(3 \mathrm{~cm}^{3}\right)$ was added to the mixture, and it was heated with removal of ethyl vinyl ether at $145^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the mixture was concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the aldehyde $5 \mathrm{c}(11.4 \mathrm{mg}, 52 \%)$ as a colorless oil ($E: Z=c a .1: 2$; determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 0.05 and 0.065 (total 6 H , each s, SiMe), 0.89 $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\mathrm{i}} \mathrm{Bu}\right), 1.58$ and $1.60(3 \mathrm{H}$ and 9 H , each s, 8-, 13-, 17 - and $21-\mathrm{CH}_{3}$), $1.68\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{H}_{3}\right), 1.95-2.16$ ($16 \mathrm{H}, \mathrm{m}, 6-, 7-, 10-, 11-$, 14-, 15-, 18- and $19-\mathrm{H}_{2}$), 2.35-2.47 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), 2.52-2.59 $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 4.04\left[2 / 3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}\right.$ due to (E)-isomer], 4.17 [$4 / 3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}$ due to (Z)-isomer], $5.07-5.16$ ($4 \mathrm{H}, \mathrm{m}, 9-, 12-$, 16 - and $20-\mathrm{H}$), 5.22 [$2 / 3 \mathrm{H}, \mathrm{t}, J 7.1,5-\mathrm{H}$ due to (Z)-isomer], 5.41 $[1 / 3 \mathrm{H}, \mathrm{t}, J 7.1,5-\mathrm{H}$ due to (E)-isomer], $9.75[2 / 3 \mathrm{H}, \mathrm{t}, J 1.8, \mathrm{CHO}$ due to (Z)-isomer], 9.77 [$1 / 3 \mathrm{H}$, br s, CHO due to (E)-isomer].

($6 E, 10 E, 14 E$)-1-tert-Butyldimethylsilyloxy-6,11,15,19-tetra-methyl-2-methyleneicosa-6,10,14,18-tetraen-3-yl acetate 6

To a solution of $\mathbf{4 b}(33.6 \mathrm{mg}, 0.0687 \mathrm{mmol})$ in pyridine $\left(1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Ac}_{2} \mathrm{O}\left(0.05 \mathrm{~cm}^{3}, 0.5 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature overnight, the reaction mixture was diluted with water and extracted with diethyl ether. The extract was washed with saturated aq. CuSO_{4}, water, saturated aq. NaHCO_{3} and brine, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the acetate $\mathbf{6}(32.5 \mathrm{mg}, 89 \%)$ as a colorless oil; $n_{\mathrm{D}}{ }^{24} 1.4799$ [Found: (HREI-MS) M ${ }^{+}$, 530.4178. $\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{3} \mathrm{Si}$ requires $M, 540.4155] ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\star} \mathrm{Bu}\right), 1.60(12 \mathrm{H}$, $\mathrm{s}, 6-, 11-, 15-$ and $\left.19-\mathrm{CH}_{3}\right), 1.68\left(3 \mathrm{H}, \mathrm{s}, 20-\mathrm{H}_{3}\right), 1.60-2.20(16 \mathrm{H}$, m, 4-, 5-, 8-, 9-, 12-, 13-, 16- and 17-H2), 2.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$), 4.16 $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 5.00-5.23\left(7 \mathrm{H}\right.$, br s, $\mathrm{C}=\mathrm{CH}_{2}, 3-, 7-, 10-, 14$ - and $18-\mathrm{H})$.
(4Z,8E,12E,16E)-4-tert-Butyldimethylsilyloxymethyl-8,13,17, 21-tetramethyldocosa-4,8,12,16,20-pentaenoic acid 5d
A solution of LDA was prepared from $\operatorname{Pr}_{2}{ }_{2} \mathrm{NH}\left(0.026 \mathrm{~cm}^{3}, 0.19\right.$ mmol) and $\mathrm{Bu}^{n} \mathrm{Li}\left(1.53 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in hexane; $0.11 \mathrm{~cm}^{3}, 0.17$ $\mathrm{mmol})$ in THF $\left(0.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under Ar. After cooling to $-78^{\circ} \mathrm{C}$, HMPA $\left(0.01 \mathrm{~cm}^{3}\right)$ was added. To the resulting solution, $\mathbf{6}(29.8 \mathrm{mg}, 0.0561 \mathrm{mmol})$ and $\operatorname{TBDMSCl}(9.3 \mathrm{mg}, 0.062 \mathrm{mmol})$ in THF $\left(0.5 \mathrm{~cm}^{3}\right)$ was added at $-78^{\circ} \mathrm{C}$. After stirring at room temperature for 24 h , the reaction mixture was poured into water and extracted with diethyl ether. The extract was washed with water and brine, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was dissolved in methanol $\left(3 \mathrm{~cm}^{3}\right)$ and THF $\left(1 \mathrm{~cm}^{3}\right)$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg}, 0.36 \mathrm{mmol})$ in water $\left(0.5 \mathrm{~cm}^{3}\right)$ was added. It was stirred at room temperature for 2 h and concentrated under reduced pressure. The residue
was diluted with brine, acidified ($\mathrm{pH} 4-5$) with aq. $\mathrm{KHSO}_{4}(1$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$) and extracted with diethyl ether. The extract was dried with MgSO_{4} and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the carboxylic acid 5d ($27.9 \mathrm{mg}, 94 \%$) as a slightly yellow oil ($E: Z=2: 98$; determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$); $n_{\mathrm{D}}{ }^{25} 1.4915 ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 3200-2800 \mathrm{br}\left(\mathrm{CO}_{2} \mathrm{H}\right), 1710 \mathrm{~s}(\mathrm{C}=\mathrm{O})$, 1260 m ($\mathrm{Si}-\mathrm{Me}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\mathrm{i}} \mathrm{Bu}\right)$, 1.59 and $1.60\left(3 \mathrm{H}\right.$ and 9 H , each s, 8-, 13-, 17- and $\left.21-\mathrm{CH}_{3}\right), 1.68$ $\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{H}_{3}\right), 1.95-2.18(16 \mathrm{H}, \mathrm{m}, 6-, 7-, 10-, 11-, 14-, 15-, 18-$ and $\left.19-\mathrm{H}_{2}\right), 2.42\left(2 \mathrm{H}, \mathrm{brt}, J 7.5,3-\mathrm{H}_{2}\right), 2.51(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7.5,2-$ $\left.\mathrm{H}_{2}\right), 4.06\left[\sim 0.04 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}\right.$ due to (E)-isomer], $4.18(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 5.05-5.18(4 \mathrm{H}, \mathrm{m}, 9-, 12-, 16-\mathrm{and} 20-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{t}$, $J 7.1,5-\mathrm{H}$); the proton due to carboxylic acid could not be observed.

Dimethyl ($\left.3^{\prime} Z, 7^{\prime} E, 11^{\prime} E, 15^{\prime} E\right)$-3-(3'-tert-butyldimethylsilyl-oxymethyl- $7^{\prime}, 12^{\prime}, 16^{\prime}, 20^{\prime}$-tetramethylhenicosa- $3^{\prime}, 7^{\prime}, 11^{\prime}, 15^{\prime}, 1^{\prime}$ -pentaen-1-yl)-2,4-bis(methoxycarbonyl)glutarate 7b
To a solution of $\mathbf{5 c}(947 \mathrm{mg}, 1.84 \mathrm{mmol})$ in dimethyl malonate ($0.53 \mathrm{~cm}^{3}, 4.6 \mathrm{mmol}$) was added piperidinium acetate (267 mg , $1.84 \mathrm{mmol})$. After stirring at room temperature for 20 h , the reaction mixture was poured into water and extracted with diethyl ether. The extract was washed with water and brine, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the ester $\mathbf{7 b}$ $(1.04 \mathrm{~g}, 75 \%)$ as a colorless oil; $n_{\mathrm{D}}{ }^{27} 1.4870$ (Found: C, 67.88; $\mathrm{H}, 9.42 . \mathrm{C}_{43} \mathrm{H}_{72} \mathrm{O}_{9} \mathrm{Si}$ requires C, 67.95; H, 9.42%); $v_{\text {max }}(\mathrm{film}) /$ $\mathrm{cm}^{-1} 1760 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1.740 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1260 \mathrm{~m}(\mathrm{Si}-\mathrm{Me}), 1150(\mathrm{C}-\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{\dagger} \mathrm{Bu}\right)$, 1.59 and $1.60\left(3 \mathrm{H}\right.$ and 9 H , each s, $7^{\prime}-, 12^{\prime}-$ - $16^{\prime}-$ and $\left.20^{\prime}-\mathrm{CH}_{3}\right)$, $1.68\left(3 \mathrm{H}, \mathrm{s}, 21^{\prime}-\mathrm{H}_{3}\right), 1.65-1.70\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 1.95-2.13(18 \mathrm{H}$, $\mathrm{m}, 2^{\prime}-, 5^{\prime}-, 6^{\prime}-, 9^{\prime}$-, $10^{\prime}-, 13^{\prime}-, 14^{\prime}-, 17^{\prime}-$ and $\left.18^{\prime}-\mathrm{H}_{2}\right), 2.91(1 \mathrm{H}$, $\mathrm{dt}, J 6.1$ and $6.1,3-\mathrm{H}), 3.72\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.82(2 \mathrm{H}, \mathrm{d}, J$ $5.8,2-$ and $4-\mathrm{H}), 4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OSi}\right), 5.07-5.16\left(4 \mathrm{H}, \mathrm{m}, 8^{\prime}-\right.$, $11^{\prime}-, 15^{\prime}$ and $\left.19^{\prime}-\mathrm{H}\right), 5.19\left(1 \mathrm{H}, \mathrm{t}, J 7.0,4^{\prime}-\mathrm{H}\right)$; EI-MS $m / z 760$ $\left(\mathrm{M}^{+}\right)$.

Dimethyl ($\left.5^{\prime} Z, 4^{\prime \prime} E, 8^{\prime \prime} E, 12^{\prime \prime} E\right)-2-\left[5^{\prime}-\left(4^{\prime \prime}, 9^{\prime \prime}, 13^{\prime \prime}, 17^{\prime \prime}\right.\right.$-tetramethyl-octadeca- $4^{\prime \prime}, \mathbf{8}^{\prime \prime}, 12^{\prime \prime}, 16^{\prime \prime}$-tetraenylidene)tetrahydropyran-2'-yl]malonate 9

To a solution of $\mathbf{7 b}(1.04 \mathrm{~g}, 1.37 \mathrm{mmol})$ in dry THF $\left(15 \mathrm{~cm}^{3}\right)$ was added dropwise TBAF $\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in THF; $3.49 \mathrm{~cm}^{3}$, 3.49 mmol) at room temperature. After stirring at room temperature for 18 h , the reaction mixture was diluted with water and extracted with diethyl ether. The extract was washed with water and brine, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the ester $9(618 \mathrm{mg}, 88 \%)$ as a colorless oil; $n_{\mathrm{D}}{ }^{26} 1.4983$ (Found: C, $74.35 ; \mathrm{H}, 10.17 . \mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{5}$ requires $\mathrm{C}, 74.68 ; \mathrm{H}$, 9.79%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1760 \mathrm{~s}$ (C=O), 1740s (C=O), 1160 s $\left(\mathrm{CO}_{2} \mathrm{R}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38-1.50\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.56$ and $1.60\left(3 \mathrm{H}\right.$ and 9 H , each s, $4^{\prime \prime}$-, $9^{\prime \prime}$-, $13^{\prime \prime}$ - and $\left.17^{\prime \prime}-\mathrm{CH}_{3}\right), 1.68$ $\left(3 \mathrm{H}, \mathrm{s}, 18^{\prime \prime}-\mathrm{H}_{3}\right), 1.86\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.95-2.15\left(16 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-, 3^{\prime \prime}-\right.$, $6^{\prime \prime}-, 7^{\prime \prime}-, 10^{\prime \prime}-, 11^{\prime \prime}-, 14^{\prime \prime}-$ and $\left.15^{\prime \prime}-\mathrm{H}_{2}\right), 2.25-2.33\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{2}\right)$, $3.48(1 \mathrm{H}, \mathrm{d}, J 9.3,2-\mathrm{H}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.76(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.80\left(1 \mathrm{H}, \mathrm{d}, J 12.8,6^{\prime}-\mathrm{H}\right), 4.07(1 \mathrm{H}$, ddd, $J 11.0,9.3$ and $\left.1.9,2^{\prime}-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 12.8,6^{\prime}-\mathrm{CH}\right), 5.07-5.16(4 \mathrm{H}, \mathrm{m}$, $5^{\prime \prime}-, 8^{\prime \prime}-, 12^{\prime \prime}-$ and $\left.16^{\prime \prime}-\mathrm{H}\right), 5.18\left(1 \mathrm{H}, \mathrm{t}, J 8.0,1^{\prime \prime}-\mathrm{H}\right)$.

$\left(5^{\prime} Z, 4^{\prime \prime} E, 8^{\prime \prime} E, 12^{\prime \prime} E\right)-2-\left[5^{\prime}-\left(4^{\prime \prime}, 9^{\prime \prime}, 13^{\prime \prime}, 17^{\prime \prime}-\right.\right.$ Tetramethyloctadeca$4^{\prime \prime}, \mathbf{8}^{\prime \prime}, 12^{\prime \prime}, 16^{\prime \prime}$-tetraenylidene)tetrahydropyran- $\mathbf{2}^{\prime}$-yl]propane-1,3diol 11a

To a suspension of LAH ($67.6 \mathrm{mg}, 1.78 \mathrm{mmol}$) in diethyl ether ($20 \mathrm{~cm}^{3}$) was slowly added $9(457 \mathrm{mg}, 0.889 \mathrm{mmol})$ in diethyl ether $\left(5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature with stirring overnight. The reaction mixture was quenched with water $\left(0.07 \mathrm{~cm}^{3}\right)$, aq. NaOH
$\left(15 \%, 0.07 \mathrm{~cm}^{3}\right)$ and water $\left(0.2 \mathrm{~cm}^{3}\right)$. The mixture was filtered and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the diol $\mathbf{1 1 a}(302 \mathrm{mg}, 74 \%)$ as a colorless gum (Found: C, 78.99; H, 11.21. $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3}$ requires C, $78.55 ; \mathrm{H}, 10.99 \%$); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3400 \mathrm{~s}(\mathrm{O}-\mathrm{H}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.55-1.64\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.59$ and $1.60(3 \mathrm{H}$ and 9 H , each s, $4^{\prime \prime}-, 9^{\prime \prime}-, 13^{\prime \prime}-$ and $17^{\prime \prime}-\mathrm{CH}_{3}$), $1.68\left(3 \mathrm{H}, \mathrm{s}, 18^{\prime \prime}-\mathrm{H}_{3}\right)$, $1.71-1.77\left(2 \mathrm{H}, \mathrm{m}, 2-\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 1.94-2.20\left(18 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-, 3^{\prime \prime}-, 6^{\prime \prime}-\right.$, $7^{\prime \prime}-, 10^{\prime \prime}-, 11^{\prime \prime}-, 14^{\prime \prime}-, 15^{\prime \prime}-\mathrm{H}_{2}$ and OH$), 2.23-2.35\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{2}\right)$, $3.69\left(1 \mathrm{H}\right.$, ddd, $J 11.3,5.2$ and $\left.2.1,2^{\prime}-\mathrm{H}\right), 3.75(1 \mathrm{H}, \mathrm{d}, J 12.8$, $\left.6^{\prime}-\mathrm{H}\right), 3.79-3.87$ and $3.95(3 \mathrm{H}$ and $1 \mathrm{H}, \mathrm{m}$ and dd, $J 11.0$ and $4.6,1-$ and $\left.3-\mathrm{H}_{2}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 12.8,6^{\prime}-\mathrm{H}\right), 5.08-5.13(4 \mathrm{H}, \mathrm{m}$, $5^{\prime \prime}-, 8^{\prime \prime}-, 12^{\prime \prime}-$ and $\left.16^{\prime \prime}-\mathrm{H}\right), 5.19\left(1 \mathrm{H}, \mathrm{t}, J 6.6,1^{\prime \prime}-\mathrm{CH}\right)$.

($\left.5^{\prime} Z, 4^{\prime \prime} E, 8^{\prime \prime} E, 12^{\prime \prime} E\right)-2-\left[5^{\prime}-\left(4^{\prime \prime}, 9^{\prime \prime}, 13^{\prime \prime}, 17^{\prime \prime}\right.\right.$-Tetramethyloctadeca$4^{\prime \prime}, 8^{\prime \prime}, 12^{\prime \prime}, 16^{\prime \prime}$-tetraenylidene)tetrahydropyran-2'-yl]-3-tosyloxy-propan-1-ol 11b

To a solution of $11 \mathrm{a}(57.8 \mathrm{mg}, 0.126 \mathrm{mmol})$ in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise $\mathrm{Bu}{ }^{n} \mathrm{Li}\left(1.53 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; $0.086 \mathrm{~cm}^{3}$, 0.13 mmol) at $-78^{\circ} \mathrm{C}$ under Ar. After the solution was slowly warmed to $-15^{\circ} \mathrm{C}, \mathrm{TsCl}(26.8 \mathrm{mg}, 0.141 \mathrm{mmol})$ was added. After stirring at $-15^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched with water and extracted with diethyl ether. The extract was washed with water and brine, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the monotosylate 11b (60.6 $\mathrm{mg}, 78 \%)$ as a colorless oil. This was a mixture of $\left(2 R^{*}, 2^{\prime} R^{*}\right)$ and ($2 R^{*}, 2^{\prime} S^{*}$)-isomers (ca. 1:1); $n_{\mathrm{D}}^{26} 1.5169 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3400 \mathrm{~m}(\mathrm{O}-\mathrm{H}), 1600 \mathrm{~m}$ (aromatic), $1180 \mathrm{~s}(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 1.40-1.49 ($\left.0.5 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.55-1.74\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, 1.57 and $1.60\left(3 \mathrm{H}\right.$ and 9 H , each s, $4^{\prime \prime}-, 9^{\prime \prime}-, 13^{\prime \prime}-$ and $\left.17^{\prime \prime}-\mathrm{CH}_{3}\right)$, $1.68\left(3 \mathrm{H}, \mathrm{s}, 18^{\prime \prime}-\mathrm{H}_{3}\right), 1.84(0.5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.91-2.15[18 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}(0.5 \mathrm{H}), 3^{\prime}-\mathrm{H}(0.5 \mathrm{H}), 2^{\prime \prime}-, 3^{\prime \prime}-, 6^{\prime \prime}-, 7^{\prime \prime}-, 10^{\prime \prime}-, 11^{\prime \prime}-, 14^{\prime \prime}-, 15^{\prime \prime}-\mathrm{H}_{2}$ and OH], 2.17-2.34 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{2}$), $2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.57$ (0.5 H , ddd, $J 11.3,6.0$ and $2.1,2^{\prime}-\mathrm{H}$), $3.62-3.69[2.5 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$, $2^{\prime}-\mathrm{H}(0.5 \mathrm{H})$ and $\left.6^{\prime}-\mathrm{H}\right], 3.76(0.5 \mathrm{H}$, dd, $J 11.3$ and $4.9,1-\mathrm{H})$, $3.83(0.5 \mathrm{H}$, dd, $J 11.6$ and $3.7,1-\mathrm{H}), 4.16$ and $4.19-4.27(0.5 \mathrm{H}$ and $1.5 \mathrm{H}, \mathrm{dd}, J 9.9$ and 5.8 and $\left.\mathrm{m}, 3-\mathrm{H}_{2}\right), 4.48(0.5 \mathrm{H}, \mathrm{d}, J 12.8$, $\left.6^{\prime}-\mathrm{H}\right), 4.53\left(0.5 \mathrm{H}, \mathrm{d}, J 12.8,6^{\prime}-\mathrm{H}\right), 5.08-5.21\left(5 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-, 5^{\prime \prime}-, 8^{\prime \prime}-\right.$, $12^{\prime \prime}-$ and $\left.16^{\prime \prime}-\mathrm{CH}\right), 7.35(2 \mathrm{H}$, dd like, $J 8.2$ and 2.6, Ar-H), 7.80 (2H, br d, J 8.2, Ar-H).

($\left.5^{\prime} Z, 4^{\prime \prime} E, 8^{\prime \prime} E, 12^{\prime \prime} E\right)-2-\left[5^{\prime}-\left(4^{\prime \prime}, 9^{\prime \prime}, 13^{\prime \prime}, 17^{\prime \prime}-\right.\right.$ Tetramethyloctadeca$4^{\prime \prime}, \mathbf{8}^{\prime \prime}, 12^{\prime \prime}, 16^{\prime \prime}$-tetraenylidene)tetrahydropyran-2'-yl]prop-2-enal 12

To a solution of $\mathbf{1 1 b}(60.6 \mathrm{mg}, 0.0970 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$, sodium acetate ($108 \mathrm{mg}, 1.32 \mathrm{mmol}$) and PCC ($34.1 \mathrm{mg}, 0.158$ mmol) were added at room temperature. After stirring at room temperature for 5 h , the reaction mixture was filtered through SiO_{2} and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give the aldehyde $\mathbf{1 2}(27.5 \mathrm{mg}$, 63%) as a colorless oil; $n_{\mathrm{D}}{ }^{25} 1.5036$ (Found: C, 82.07; H, 10.33. $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2}$ requires C, $82.14 ; \mathrm{H}, 10.57 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1700$ s $(\mathrm{C}=\mathrm{O}), 1630 \mathrm{w}(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25-1.35(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 1.60\left(12 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-, 9^{\prime \prime}-, 13^{\prime \prime}-\right.$ and $17^{\prime \prime}-\mathrm{CH}_{3}$), $1.68\left(3 \mathrm{H}, \mathrm{s}, 18^{\prime \prime}-\right.$ $\left.\mathrm{H}_{3}\right), 1.95-2.21\left(17 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $2^{\prime \prime}-, 3^{\prime \prime}-, 6^{\prime \prime}-, 7^{\prime \prime}-, 10^{\prime \prime}-, 11^{\prime \prime}-$, $14^{\prime \prime}-$ and $\left.15^{\prime \prime}-\mathrm{H}_{2}\right), 2.30\left(1 \mathrm{H}\right.$, br d, $\left.J 13.5,4^{\prime}-\mathrm{H}\right), 2.38(1 \mathrm{H}, \mathrm{d}$, $J 13.5,4^{\prime}-\mathrm{H}$), 3.87 ($1 \mathrm{H}, \mathrm{d}, J 12.5,6^{\prime}-\mathrm{CH}$), 4.33 ($1 \mathrm{H}, \mathrm{d}, J 11.0$, $\left.2^{\prime}-\mathrm{H}\right), 4.69\left(1 \mathrm{H}, \mathrm{d}, J 12.5,6^{\prime}-\mathrm{H}\right), 5.07-5.18\left(4 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-, 8^{\prime \prime}-, 12^{\prime \prime}-\right.$ and $\left.16^{\prime \prime}-\mathrm{H}\right), 5.21\left(1 \mathrm{H}, \mathrm{t}, J 6.9,1^{\prime \prime}-\mathrm{H}\right), 6.06(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{C}=\mathrm{CH}), 6.54$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{C}=\mathrm{CH}), 9.54(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

($\left.5^{\prime} Z, 4^{\prime \prime} E, 8^{\prime \prime} E, 12^{\prime \prime} E\right)-2-\left[5^{\prime}-\left(4^{\prime \prime}, 9^{\prime \prime}, 13^{\prime \prime}, 17^{\prime \prime}-\right.\right.$ Tetramethyloctadeca$4^{\prime \prime}, 8^{\prime \prime}, 12^{\prime \prime}, 16^{\prime \prime}$-tetraenylidene)tetrahydropyran-2'-yl]prop-2-enoic acid [(\pm)-hippospongic acid A] 1

To a solution of $\mathbf{1 2}(42.0 \mathrm{mg}, 0.0957 \mathrm{mmol})$ in $\mathrm{Bu}^{t} \mathrm{OH}\left(15 \mathrm{~cm}^{3}\right)$ and 2-methylbut-2-ene ($1 \mathrm{~cm}^{3}$), a mixture of 79% sodium chlorite $(112 \mathrm{mg}, 0.957 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(0.12 \mathrm{mg}, 0.77 \mathrm{mmol})$
in water $\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise over 10 min . The pale yellow solution was stirred at room temperature overnight. After removal of volatile components under reduced pressure, the residue was diluted with diethyl ether, acidified with dil. HCl and extracted with diethyl ether. The extract was washed with water and brine, dried with MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed on SiO_{2} to give hippospongic acid A 1 (43.7 mg , quant) as a colorless oil; $n_{\mathrm{D}}{ }^{26} 1.5079$ [Found: (HREI-MS) M^{+}, 454.3451. $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3}$ requires M, 454.3437]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3600-2600 \mathrm{~s}\left(\mathrm{CO}_{2} \mathrm{H}\right)$, $1700 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1640 \mathrm{~m}(\mathrm{C}=\mathrm{C}), 1430 \mathrm{~s}, 1380 \mathrm{~m}, 1310 \mathrm{w}, 1290 \mathrm{~m}$, $1170 \mathrm{w}, 1080 \mathrm{~s}, 1050 \mathrm{~m}, 970 \mathrm{~m}, 900 \mathrm{w} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.47$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 1.60\left(12 \mathrm{H}, \mathrm{s}, 4^{\prime \prime}-, 9^{\prime \prime}-\right.$-, $13^{\prime \prime}-$ and $\left.17^{\prime \prime}-\mathrm{CH}_{3}\right), 1.68$ ($3 \mathrm{H}, \mathrm{s}, 18^{\prime \prime}-\mathrm{H}_{3}$), 1.95-2.20 ($17 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 2^{\prime \prime}-, 3^{\prime \prime}-, 6^{\prime \prime}-, 7^{\prime \prime}-, 10^{\prime \prime}-$, $11^{\prime \prime}-, 14^{\prime \prime}-$ and $\left.15^{\prime \prime}-\mathrm{H}_{2}\right), 2.32-2.42\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{2}\right), 3.91(1 \mathrm{H}, \mathrm{d}$, $\left.J 12.8,6^{\prime}-\mathrm{H}\right), 4.32\left(1 \mathrm{H}, \mathrm{d}, J 11.3,2^{\prime}-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{d}, J 12.8$, $\left.6^{\prime}-\mathrm{H}\right), 5.08-5.17\left(4 \mathrm{H}, \mathrm{m}, 5^{\prime \prime}-, 8^{\prime \prime}-, 12^{\prime \prime}-\right.$ and $\left.16^{\prime \prime}-\mathrm{CH}\right), 5.24(1 \mathrm{H}, \mathrm{t}$, $\left.J 7.0,1^{\prime \prime}-\mathrm{CH}\right), 5.93(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{C}=\mathrm{CH}), 6.38(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{C}=\mathrm{CH})$; the proton due to carboxylic acid could not be observed; $\delta_{\mathrm{C}}(126$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 16.0, 16.1, 17.7, 25.6, 25.7, 26.7, 26.8, 28.21, $28.25,32.9,33.7,39.7,67.1,75.6,124.21,124.24,124.4,124.89$, 124.93, 127.1, 131.2, 132.5, 134.4, 134.9, 135.2, 140.7, 170.0.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, of the Japanese Government.

References

1 Part 3, K. Mori, H. Takikawa and M. Kido, J. Chem. Soc., Perkin Trans. 1, 1993, 169.

2 S. Ohta, M. Uno, M. Tokumasu, Y. Hiraga and S. Ikegami, Tetrahedron Lett., 1996, 37, 7765.
3 (a) H. Hioki, M. Hamano, Y. Mimura, M. Kodama, S. Ohta, M. Yanai and S. Ikegami, Tetrahedron Lett., 1998, 39, 7745; (b) M. Tokumasu, H. Ando, Y. Hiraga, S. Kojima and K. Ohkata, J. Chem. Soc., Perkin Trans. 1, 1999, 489.

4 (a) H. Takikawa, S. Muto, D. Nozawa, A. Kayo and K. Mori, Tetrahedron Lett., 1998, 39, 6931; (b) S. Takanashi, M. Takagi, H. Takikawa and K. Mori, J. Chem. Soc., Perkin Trans. 1, 1998, 1603.

5 M. Ceruti, F. Viola, F. Dosio, L. Cattel, P. Bouvier-Navé and P. Ugliengo, J. Chem. Soc., Perkin Trans. 1, 1988, 461.

6 Y. F. Zheng and A. C. Oehlschlager, J. Org. Chem., 1994, 59, 5803.
7 E. J. Corey and G. N. Widiger, J. Org. Chem., 1975, 40, 2975.
8 W. S. Johnson, L. Wethemann, W. R. Bartlett, J. J. Brocksom, D. J. Faulkner and M. R. Petersen, J. Am. Chem. Soc., 1970, 92, 741.

9 D. B. Dess and I. C. Martin, J. Org. Chem., 1983, 48, 4155.
10 (a) W. H. Watanabe and L. E. Conlon, J. Am. Chem. Soc., 1957, 79, 2828; (b) S. J. Rhoads and N. R. Raulins, Org. React. (N. Y.), 1975, 22, 1.
11 R. E. Ireland, R. H. Mueller and A. K. Willard, J. Am. Chem. Soc., 1976, 98, 2868.
12 D. R. Morton and J. L. Thompson, J. Org. Chem., 1978, 43, 2102.
13 F. Tietze and U. Beifuss, Org. Synth., 1992, 71, 167.
14 J. A. Marshall, N. H. Anderson and A. R. Hochstetter, J. Org. Chem., 1967, 32, 113.
15 (a) P. G. McDougal, J. G. Rico, Y.-I. Oh and B. D. Condon, J. Org. Chem., 1986, 51, 3388; (b) H. Kotsuki, I. Kadota and M. Ochi, Tetrahedron Lett., 1989, 30, 3999.
16 B. S. Bal, W. E. Childers, Jr. and H. W. Pinnick, Tetrahedron, 1981, 37, 2091.

